SYNTHESIS AND NMR ANALYSIS OF CYCLO-[85% ''C-ASP]-PRO: ''C-''C VICINAL COUPLING CONSTANTS AND CONFORMATION

F. PIRIOU, F. TOMA, J. SAVRDA and S. PERMANDITANA Service de Biochimie, Dépt. de Biologie, CEN Saclay, B.P. No. 2, 91190 Gif-sur-Yvette, France

^aCurrent address: Institut Pastour, 25 Rue du Docteur Roux, 75015 Paris, Prance

(Received in UK 21 August 1978)

Abstract—The dipoptide cyclo(Asp-Pro) where the aspartic acid residue was \$5% ¹³C enriched, was synthesized with the aim of analyzing its conformation is solution by using ¹H-¹H, ¹³C-¹H and ¹³C-¹³C coupling constant parameters. The values of these couplings agree well with each other and show that the side chain of the aspartic acid residue adopts privileged conformations the proportions of which vary somewhat with pH, and more weakly, with a change in solvent. The ¹³C-¹³C interresidue coupling constants ²I_{C/-C/2} and ²I_{C/-C/2} obtained after long accumulation of the signals of uncertaintied carbons, have different values; they show puckering in the pyrrolidine ring similar to that found in cyclo(Leu-Pro) in the solid state. It was concluded that ¹³C-¹³C coupling constants represent an excellent means of determining the side chain conformation (whenever the incorporation of an enriched amino acid into the poptide is possible) that will find applications particularly in the case of poptides with complicated proton spectra.

Cyclic dipeptides which are increasingly considered as metabolic intermediates^{1,2} and derivatives of which exhibit antiviral properties,³ have been extensively studied either in the solid state by X-ray crystallography or in solution by several spectroscopic methods.⁴ As diketopiperazines have restricted rotational freedom, the sumber of the conformations is limited; and thus they constitute excellent substrates for collecting parameters useful for analysing more complicated peptides. The following rules which are true for both solutions and solids have thus been established.

- (1) The diketopiperazine ring is planar or almost planar when either the two residues are glycine or one of the two α-branched residues is of the D-form.
- (2) The diketopiperazine ring is buckled (boat conformation) in all other cases. Proline and derivatives accentuate the buckling and limit the motions. In all L-L or Gly-L-diketopiperazines examined, proline itself adopts exclusively the envelope C_B-C_B endo conformation.
- (3) Aromatic residues lead to the flagpole-boat conformation. There are no particular features to note concerning the side chains of other residues except that conformations with $\chi_1 = +60^\circ$ are often preferred in solution. Only few data concerning polar side-chains in diketopiperazines exist.

The present NMR study of cyclo(L-Asp-L-Pro) (Fig. 1) was undertaken in order to investigate the side-chain arrangements of the Asp and Pro residues and their effects on the dikesopiperazine ring buckling. The technique of inserting ¹³C-enriched amino acids for peptide conformation analysis was developed several years ago; ⁵⁻¹⁰ many ¹³C-¹³C vicinal coupling constants in addition to those of ¹H-¹H and ¹³C-¹H have been measured and interpreted in conformational terms. Results show that ¹³C-¹³C coupling constants are valuable parameters for probing side-chain and backbone conformations of peptides in solution; they give information on molecular aspects unexplorable by ¹H NMR and ¹³C NMR dealing with ¹³C natural abundance compounds.

EXPERIENTAL

Material and instrumentation. Uniformly 85% ¹³C enriched amino acida were prepared on a large scale from Spirulina maxima as previously reported.⁶ The synthesis of ¹³C enriched Asp-Pro dikelopiperazine was carried out according to the following scheme:

The preparation of the β-benzylester of ¹³C enriched aspartic acid¹¹ yielded 42% β-benzylespartate(I), 39% tosylate of the dibenzylester of aspartic acid and 12% of copper complexed aspartic acid. Products II and III were prepared by classical methods, III was then condensed with free proline in dimethylformamide according to the method by Savrda. ¹² The removal of the Boc group by formic acid¹³ and subsequent heating in ethanol gave the diketopiperazine V in good yield. The final product VI was obtained quantitatively by catalytic hydrogenation of V in ethanol/water solution, m.p.: 273–276°. (Found: C, 55.6; H, 6.0; N, 14.1. Calc. for ¹²C₅¹³C₆H₁₅O₅N₂: C, 55.8; H, 6.1; N, 14.0%).

The ¹³C NMR samples in ²H₂O at 2.10⁻¹ M to 3.10⁻¹ M concentrations contained dioxane as interval reference (taken at 67.4 ppm from TMS). The spectra were recorded at 25.2 MHz and 20 MHz on a Varian XL 100-12 WG and a CFT 20 spectrometer respectively at 30°C probe temp. 8K data points were generally used for a spectral width of 500 Hz permitting an internally used for a spectral width of 500 Hz permitting an internal used the final values of 8 and J are arithmetic averages. Proton broad band decoupling was applied to measure 8 from the spectra of the ¹³C natural abundance and J_{C,C} from

442 F. Pittiou et al.

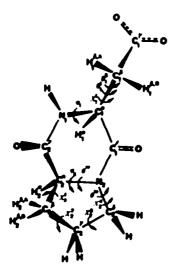


Fig. 1. Dihedral angles, bonds, atoms and main conformational features in cyclo(L-Asp-L-Pro). The numbering and lettering given in this figure is used throughout the present paper in the text and in the Tables. The dihedral angles $\phi_1, \chi_1^{-1}, \theta_1^{-1}, \theta_1^{-2}$ of Asp (residue 1) and $\phi_2, \chi_2^{-1}, \theta^{M}$ (defined by $C(N_2C_2^{-\alpha}C_2^{-\beta})$ of Pro (residue 2) can be estimated directly from NMR data (see Results and Discussion).

those of the ¹³C enriched compounds. The spectra with proton couplings were recorded with gated proton decoupling in which the decoupler was off during data acquisition. The ¹H NMR samples at about 0.1 M concentration either in ²H₂O (internal reference TSP-d₄) or in DMSO-d₆ (int. reference TMS) were run at 250 MHz on the Cameca TSN-250 spectrometer in the C.W. mode. The ¹H-¹H coupling constants were obtained with ±0.1 Hz precision. For titrations, the pH was adjusted by concentrated NaO²H and ²HCl and measured directly inside either the 10 mm ¹³C NMR tube or the 5 mm ¹H NMR tube. None of the pH readings was corrected for deuterium isotope effects.

Spectral analysis and procedures. The ¹H-¹H and ¹³C-¹H coupling constants were measured in the ¹H and ¹³C NMR spectra of the natural abundance compound. The directly bonded ¹³C-¹³C couplings were determined from spectra of the ¹³C labelled samples (Fig. 2). The ¹³C-¹³C couplings over two and three bonds needed high resolution spectra and were measured either directly at the ¹³C enriched atom signals for the intra Asp couplings or at ¹³C natural abundance signals of proline for the inter Asp-Pro couplings.

inter Asp-Pro couplings.

Analysis of 85% ¹³C enriched amino acid spectra has been reported elsewhere: it was shown that the residual 15% of ¹³C in the C atoms complicate the spectra to such an extent that incorporation of more than one labelled residue in the same peptide was not permitted. However, ¹³C-¹³C long range couplings, albeit weak compared to the one bond couplings are often easily readable especially on the carbonyl multiplets. ^{6,3} Couplings involving both ¹³C enriched and ¹³C natural abundance atom positions form simpler multiplets at the ¹³C natural abundance resonance signal; their detection, however, demands long accumulation times.

Proton coupled ¹³C spectra of the carboxyl group were analysed in ¹³C resonance mode as the X part of an ABCX system according to Hansen et al. ¹⁴ and Espersen and Martin. ¹⁵Such couplings were measured in ¹³C natural abundance cyclo-(Asp-Pro) at the C₁⁷ signal which appears as a pseudo quadruplet.

Several 'H-'H coupling constants were determined in cyclo(Asp-Pro) at ¹³C natural abundance either dissolved in ²H₂O as a function of pH or in DMSO-d₀ only for the un-ionised (COOH) state (solubility in the organic solvent is weak for the ionised species). They concern mainly the vicinal couplings H₁"-H₁^{BA}, H₁^{BB} and H₁"-N₁H (in DMSO-d₀). We for proline only the H₂" signal was analysed because of the complexity of the H₂^{BA}, H₂^{BB} multiplet due to additional couplings with H₂" pro-

tons. In addition, one ³J_{H1*-H2*} coupling was found at both signals involved.

Fractions of rotamer populations were calculated from the ${}^3J_{H_1^0-H_1^0}{}^{AJ_2^0}J_{H_1^0-H_1^0}{}^{AB}$, the ${}^3J_{H_1^0-C_1^0}$ and the ${}^3J_{C_1^0-C_1^0}$ coupling constants data using the following parameters:

$$J_a^{H,H} = 2.6 \text{ Hz}, \quad J_i^{H,H} = 13.6 \text{ Hz},^{17}$$

 $J_a^{H,C} = 0.4 \text{ Hz}, \quad J_i^{H,C} = 11.9 \text{ Hz},^{14}$

and

$$J_{z}^{CC} = 0.5 \text{ Hz}, \quad J_{c}^{CC} = 5.9,$$

for proton-proton, carbon-13-proton and carbon-13-carbon-13 couplings respectively. The latter values were arrived at by comparing ¹³C couplings with the ¹H couplings in several amino acids, when they were applied to free amino acids and C-terminal or acid residues in peptides (work in progress). They agree well with their counterparts in the relationships proposed by Barfield et al. ¹⁰ for butanoic acid and the Marshall and Miller data ¹⁰ for aliphatic carboxylic acids. The Kopple et al. ²⁰ relationship for side chain arrangements was used for proline.

RESULTS AND DESCUSSION

13C-NMR chemical shifts. 13C chemical shifts of all C atoms measured for the un-ionised and the ionised form together with the pH effects are assembled in Table 1. The resonances are assigned on the basis of those of the free amino acids, by analysing the pH dependence effects on the chemical shifts and by comparing the 13C-labelled and ¹³C natural abundance compound spectra (Fig. 2). For proline they are about the same as the ones found for any proline containing diketopiperazine. 4.9 During deprotonation of the side chain y-carboxylic group, all the aspartic acid carbons are shifted downfield. The effect decreases regularly from the C₁ end to the C₁ end, simply describing a phenomenon dependent on the carbon-carboxyl distance, such as it had already been shown for C-terminal amino acids in peptides. 11 The averaged pK value of the carboxyl group, estimated from the chemical shift curves of all Asp carbons is about 4.25.

¹H NMR chemical shifts. ¹H chemical shifts for two pH values are given in Table 2. Again they were assigned from the comparison with ¹H resonances of related compounds and with the assistance of the pH effects. In this work we designate by A the β-proton of the Asp residue characterized by the signal having the smaller chemical shift and giving rise to the larger coupling with the α-proton at neutral pH. If we take into account the generally accepted steric factors, then rotamer I is found to be more populated than rotamer II. This assignment is further corroborated by the ${}^3J_{C_1'-C_1'}$ data which emerge as a good means for assigning the A and B β-protons (see rotamers in Table 4). In agreement with the ${}^{13}C_1$ results, the pH dependence of the H_1^{α} , $H_1^{\alpha A}$ and $H_1^{\alpha B}$ proton chemical shifts yields of pK of 4.25.

Coupling constants: ${}^{1}J_{C,C}$, ${}^{2}J_{C,C}$ and ${}^{2}J_{H,H}$ coupling constants (Table 3). The germinal ${}^{2}J_{H,A} \land_{H,A} \land_$

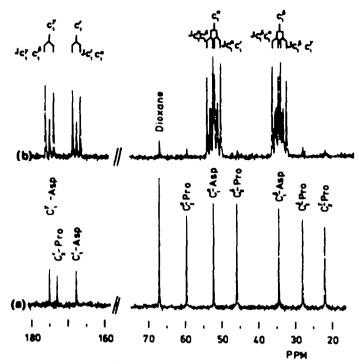


Fig. 2. ¹³C NMR spectra of: (a) natural ¹³C abundance cyclo (Asp-Pro), (b) cyclo ([85% ¹³C-Asp]-Pro) in ²H₂O at pH 1.55.

		Asp			Pro					
pH	c;	c ^a i	c <mark>8</mark>	cţ	c;	c ⁴	Cg.	c, į	C g	
1.55	167.39	52.68	35.09	174.70	172.67	60.00	28.68	22.71	46.37	
6.40	168.16	53.76	38.20	178.40	172.68	59.91	28.62	22.73	46.33	
Δδ	0.77	1.08	3.01	3.70	- 0.01	-0.09	- 0.06	0.02	- 0.04	

Table 1. 13C chemical shifts in cyclo(Asp-Pro)

Table 2. ¹H chemical shifts in cyclo(Asp-Pro)

Heq		Asp		Pao					
	H ^A i	₩\$,8	₩ ⁸ , Å	1/2	H8.	A-8	H ^Y Z	H ₂	
1.44	4.55	3.01	2.96	4.36	2.52	2.04	2.0	3.55	
6.02	4.45	2.80	2.69	4.36	2.55	2.05	2.0	3.55	

conserve their initial value of 52 Hz and ~40 Hz respectively, during the deprotonation process of the carboxylic group. At the same time an almost linear relationship between the C1 chemical shifts and the ¹J_{C1}, variations is observed, the slope being 1.3 Hz/ppm (for C-termanal glycine in di and tripeptides

this slope was about 1.5 Hz/ppm⁶). The two ¹³C geminal couplings $^2J_{C_1^{12}-C_1^{6}}$ and $^2J_{C_1^{12}-C_1^{6}}$ are about equal for a given pH: ~1.5 Hz in the neutral form and slightly smaller in the anion. Apparently, ion444 F. Piniou et al.

Tonization Atute	13c;-c	13ca_c8	Jcg-cy	² _{Jca−cĭ}	² ³ c;-c8	23 _H 8,A _H 8,8
с,юон	52.0	40.3	56.0	2.0	1.8	- 17.5
c,00-	52.0	40.0	51.0	1.2	1.7	- 16.9

Table 3. One bond and two bond coupling constants in cyclo(Asp-Pro)

isation of the carboxylic group does not affect the geminal couplings to a great extent in this compound. Several authors have attempted to correlate geminal coupling with torsional angles, but further investigations are needed to assess the validity of this approach for an Asp residue.

Vicinal H-H, 13C-H and 13C-13C intraresidue coupling constants and the aspartic acid side chain arrangement. The vicinal coupling constants measured in both natural abundance and 13C enriched cyclo (Asp-Pro) are listed in Table 4, together with the fractions of the rotamer populations. They have been estimated by using the three sets of 3J_a and 3J_t coupling constants given in the Experimental. The good agreement that exists between the values of rotamer population obtained by each method shows the validity of the use of ¹³C couplings in this approach. Moreover, the 13C-13C couplings yield unequivocally rotamer I, and therefore eliminate the ambiguity arising from the impossibility to differentiate rigorously between the HAA and HAB protons, i.e. between rotamer I and II. Given the errors associated with estimates of rotamer populations, this task is most easily accomplished when the fractions of rotamer I and II are very different as is the case at neutral pH.

In the uncharged form of cyclo(Asp-Pro) rotamer III is found in greater amount than the two others in both solvents; this situation is often encountered in cyclo-

dipeptides,⁴ less often in linear peptides, and can be explained mainly by steric factors which are specific to diketopiperazines. Clearly, dimethylsulfoxide and pH effects introduce only small changes in the rotamer distribution; undoubtedly side chain charges, solvation forces and H-bonds are not the major factors influencing the side chain organization in this compound.

Vicinal H-1H, 13C-13C and H-1H five bond coupling constants: the pyrrolidine and the diketopiperazine ring conformations. In dimethylsulfoxide the NH signal of the aspartic acid residue appears as a singlet, i.e. JHICANIM ~0-1 Hz. According to this value the dihedral angle. ϕ_1 (aspartic acid residue) must be -30° to -40°, which already suggests that the diketopiperazine ring assumes a boat conformation (bowsprit-boat) with the α -protons located in quasi-axial position and the two side chain C°-C° bonds in quasi-equatorial position. In aqueous solution the Asp and Pro α -proton signals show well resolved extra splittings (2.5 Hz) assigned to the long range coupling 5J with each other. Five-bond 1H1°-1H2° couplings are often observed in cyclic peptides24 and have been extensively studied by Davies and Khaled25 in a large series of compounds in correlation with their conformation. According to the relationship

$$^{3}J = nA^{\circ} \sin^{4}\theta$$

where A° is a constant (1.4 Hz in ²H₂O) for syncoplanar

Table 4. Vicinal coupling constants and side chain arrangement of aspartic acid in cyclo(Asp-Pro). (For spectral analysis and rotamer calculation, see Experimental section)

	2	H _Z O (C	0 0 H &CE	te)	2,	20 1 00	0 40s	te)	PMSO	[COOH	state)	
Coupled Nuclei	3 ₃ (Hz)	1	otamers II	111	S _J (Hz)	i	III	T 111	3 _J (Hz)		11	1111
Hq - Hg, A, Hg, B	5.2, 5.1	0.24	0.23	0.53	6.6, 4.7	0.36	0.19	0.45	5.3, 6.5	0,25	T 0.35 	0,40
c; - c;	2.0	0.27		I	2.5	0.37	 		1.75	0.23	 	
Ha - c¦	6.0		 	0.49	5.7			0.46	5.8	_	† -	0.47

C"H groups, n equals the number of equivalent coupling paths (i.e. n=2 for diketopiperazines) and θ equals $|\phi-60"|$, one obtains a value for the dihedral angle ϕ_1 of about -35", -40". Considering the remarkable agreement between the ϕ values obtained by the two different sets of coupling constants, it can be reasonably concluded that the diketopiperazine ring assumes about the same buckled "bowsprit" conformation in the two solvents.

The $H_2^{**}-H_2^{**}$ and $H_2^{**}-H_2^{**}$ proton coupling constants in proline measured at the α -proton signal are 10.2 Hz and 6.2 Hz for both the neutral and the anionic form in 2H_2O solution. According to the Kopple et al. curve, these values correspond to torsional angles of 155° or 0° and 35° or 135° (rounded to the nearest five degrees). The values of 155° and 35° converge to a quite fixed value for the dihedral angle χ_2^{-1} of -35° (Fig. 1). Two interresidue $^{13}C_{-1}^{-13}C$ vicinal coupling constants are also related to the geometry of the pyrrolidine ring; on the one hand $^3J_{C_1^{**}-C_2^{**}}$ characterized by a value of 1.95 Hz describes the torsional angle θ^{1V} ; on the other hand, $^3J_{C_1^{**}-C_2^{**}}$ of 2.9 Hz is related to θ^{111} .

In the absence of a suitable relationship directly applicable to peptide side chains, the significance of the interresidue ¹³C-¹³C coupling data in terms of angular dependence is checked against the crystallographic parameters of the analogous compound cyclo(Leu-Pro) reported by Karle. ²⁷ We note (Table 5) that proline containing L-L cyclic dipeptides show about the same

conformational features throughout, a fact which encourages the present comparison: the diketopiperazine ring assumes a significant boat-bowsprit buckling; the pyrrolidine ring conformer is of C_R — C_B endo type (C_S = envelope; C_B endo: the C_B atom is above the plane formed by the other four atoms of the ring and on the same side as the CO group). The validity of the comparison, however, requires the conservation of the main conformational features in both the solid and solution states. The following data indicate that possible distortions occurring in cyclo(Asp-Pro) have relatively small effects: the values of ${}^3J_{H_2^n-H_2^n}$ and ${}^3J_{H_2^n-H_2^n}$ in proline lead to a unique value of χ_2^1 , in perfect agreement with the X-ray data; the ϕ_1 value (Asp residue) determined by both ${}^3J_{H_1^n-H_1^n}$ and ${}^5J_{H_1^n-H_2^n}$ fits well with the crystallographic data.

It is concluded that the cyclopeptide assumes about equal conformations in solution and in the solid state so that ${}^3J_{C_1-C_2}{}^a=1.95$ Hz and ${}^3J_{C_1-C_2}{}^a=2.9$ Hz describe approximately the value of $\theta^{TV}\sim 150^{\circ}$ and $\theta^{HI}\sim 170^{\circ}$ respectively which are derived from the X-ray data. This accuracy is largely sufficient for the present purpose as the trends rather than a rigorous correspondence are sought. From these results it becomes clear that the conformation of the pyrrolidine ring of cyclo (Asp-Pro) in solution is mainly of C_8 — C_8 endo type ($\chi_2^{-1}\sim -30^{\circ}$ and $\chi^4\sim -10^{\circ}$) as it is encountered in cyclo(Leu-Pro). From a general point of view it appears that the couplings

Table 5. Comparison of cyclo(Leu-Pro) X-ray data and cyclo(Asp-Pro) NM
--

	cyclo(Asp ₁ -Pro ₂)		cyclo(Lex,-Pro _s)				
Coupling (H	Angles derived from X-ray data						
¹ H - ¹ H	¹³ c - ¹³ c	from MMR data a)	6)				
37 _{H=11} 8,A = 10.2		ul 15°	χ <mark>έ: - 38°</mark>				
³ J _{1β-H} β,8 = 6.7	χ _Z : - 35°						
			χ ² ε 36°				
			χ ³ ε - 25°				
			x2: 4*				
37 _{H1-N1} H - 0-0.2		•j: -20° & -40°	ø ₁ , ø ₂ : −42°				
⁵ 3 _{H1} -H2 - 2.4		•1, •2:-40° € -45					
			ψ ₁ , ψ ₂ : 54°				
			w ₁ . w ₂ : 6*				
	⁵ 3 _{C;-C;} - 2.9		9 ¹¹¹ ; 170°				
	33 _{C1} -c8 + 1.95		0 ¹⁹ : 150*				

a) net. [14,16,17] b) net. [23]

446 F. Pittiou et al.

 $^3J_{C_1' - C_2''}$ and $^3J_{C_1' - C_2''}$ provide useful information about the proline ring puckering. It can be stated that only when $^3J_{C_1' - C_2''} = ^3J_{C_1' - C_2''}$ is the ring planar.

CONCLUMON

The present work demonstrates that ¹³C-¹³C coupling constants are well adapted for an approach to peptide conformation, especially when side chains are involved. This applies clearly to aspartic acid and also to proline in the simple compound cyclo (Asp-Pro) but will be of special interest in peptides having more complicated ¹H NMR spectra, notably when suitable relationships for the angular dependence of ¹³C-¹³C couplings will be established.

Acknowledgements—The authors are very grateful to Drs. P. Promageot and E. Bricas for stimulating their interest in this work and to Dr. E. Sala and R. Mermet-Bouvier for preparing the ¹³C-enriched amino acids.

REPERCED.

- ¹G. E. Krejcarek, B. H. Dominy and R. G. Lawton, Chem. Commun. 1450-1452 (1968).
- ²C. Praesd, T. Matsui and A. Peterkofsky, Nature 268, 142-144 (1977).
- ³P. G. Sammes, Progress in the Chemistry of Organic Natural Products 32, 51-118 (1975).
- ⁴V. J. Hruby, Chemistry and Biochemistry of Aminoacids, Papeldas and Proteins (Edited by B. Weinstein), pp. 1-161. Marcel Dekker, New York (1974).
- ⁵S. Tran Dinh and S. Fermandjian, J. Phys. 34, suppl. C3, 45–48 (1973).
- 4S. Tran Dinh, S. Permandjian, E. Sala, R. Mormet-Bouvier, M. Cohen and P. Fromageot, J. Am. Chem. Soc. 96, 1484–1493 (1974).

- ²S. Tran Dinh, S. Fermandjian, E. Sala, R. Mermet-Bouvier and P. Fromageot, *Ibid.* 97, 1267–1269 (1975).
- S. Pormandjian, S. Trae Dinh, J. Savrda, E. Sala, R. Mermet-Bouvier, E. Bricas and P. Promagaot, Blochim. Blophys. Acta 339, 313-338 (1975).
- W. Haar, S. Fermandjian, J. Vicar, K. Blaha and P. Fromageot, Proc. Natl Acad. Sci. U.S.A. 72, 4948-4952 (1975).
- ¹⁶F. Piriou, K. Lintner, H. Lam-Thanh, F. Town and S. Fermandline, *Tetrahedron* 34, 553–556 (1978).
- ¹¹L. Benoiton, Can. J. Chem. 40, 570 (1962).
- ¹²J. Savrda, J. Org. Chem. 42, 3199 (1977).
- B. Halpern and D. E. Nitecki, Tetrahedron Letters 3031 (1967).
 P. E. Hansen, J. Feeney and G. C. K. Roberts, J. Magn. Res. 17, 249 (1975).
- W. G. Esperson and R. B. Martin, J. Phys. Chem. 88, 741 (1976).
 V. F. Bystrov, Progress in NMR Spectroscopy (Edited by J. W. Emsley, J. Feeney and L. H. Sutcliffe), Vol. 10, pp. 41-81.
 Pergamon Press, Oxford (1976).
- ¹⁷K. G. R. Pachler, Spectrochim. Acta 20, 581 (1964).
- ¹⁶M. Barfield, L. Burfitt and D. Doddrell, J. Am. Chem. Soc. 97, 2631–2634 (1975).
- ¹⁹J. L. Marshall and E. Miller, Ibid. 95, 8305-8363 (1973).
- ²⁶K. D. Kopple, G. R. Wiley and R. Tanke, Biopolymers 12, 627-636 (1973).
- ²¹M. Christl and J. D. Roberts, J. Am. Chem. Soc. 94, 4565 (1972).
- ²²M. Barfield and D. M. Grant, *Ibid.* 83, 4726 (1961).
- ²⁷R. Wasylishen and T. Shaeffer, Can. J. Chem. \$1, 961-973 (1973).
- ²⁴J. Vicar, M. Budesinsky and K. Blahn, Coll. Czech. Chem. Comm. 38, 1940-1956 (1973).
- ²⁵D. B. Davies and Md. A. Khaled, J. Chem. Soc. Perkin II, 1238-1244 (1976).
- ²⁶R. Balasubramanian, A. V. Lakshiminarayanan, M. N. Sebesan, G. Togoni, K. Venkatesan and G. N. Ramachandran, Int. J. Partide Prot. Research 3, 25-33 (1971).
- 271. L. Karle, J. Am. Chem. Soc. 94, 81-84 (1972).
- ²⁸V. Madison, *Biopolymers* 16, 2671–2692 (1977).